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Historical Perspective: Ablative TPS

> TPS Investment in the 60’ s - Focused Program -
Technology development with specific mission goal

e Material Performance, Heat Shield System Development
and Design Architecture

e Test, Test and more Test

e Ground and flight test => Material behavior, Analytical
capabilities and model development

> Apollo 1960’ s - 1970° Avcoat 5026-39/HC-G

e Developed H/C System due to reliability risk of tiled
approach

— Needed a lighter weight system compared to DOD TPS
(Carbon- or Quartz Phenolic)

e Too heavy for Mars entry - Viking

» Viking (1975) SLA-561
e Used low density silicone in H/C - similar to Apollo TPS
— Good insulator with a robust architecture
» Pioneer-Venus, Galileo
e NASA didn’ t have materials to handle entry conditions

e DOD investment in carbon phenolic leveraged to these
missions

e But, NASA did not fully explore material performance limits
due to facility capability (e.g., spallation on Galileo)

Arc Jet Testing
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TPS Technology Investment:
Post Apollo/ Viking Era

> Reusable materials technology investment in the late 70’ s
through 80’ s/mid 90’ s (Reusable Systems - Shuttle)

e Very limited investment / efforts in Ablative TPS
— Reusable Systems for Low Earth Orbit (LEO)

e Faster, Better and Cheaper philosophy - Genesis and Stardust
» Project Choice

e Pathfinder used Viking as heritage

e MER used Pathfinder as heritage

e MSL is using all of this as heritage

> Mission Proposals are handicapped by lack of investment
in and characterization of TPS

e Jupiter Multi-Probe

e Mars Sample Return

e Venus Probe Mission

e Comet and Asteroid Sample Return Missions
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Timeline: TPS Development to
Engineering Solutions to Missions

Mission, Design and
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Heritage Argument

Arc Jet Testing

» The heritage argument is seriously flawed
since "heritage” involves more than
material performance when applied to a
system

e Traceability from ground test to flight
— via math models
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Scale ) . 1\\ @ / / Pitch engines
— (Test to flight) article size limited by test facilities SESAN T
Manufacturability s/ ) /e
. . . . Side window — A - @ I/—XC:2323
Verification & validation: o~ /
e~ = Zns
— From component to full scale system s N XY =es 5 )
— Thermal, Thermo-structural, Thermal cycling/ st i
thermal vac, vibro-acoustic, MMOD A comparienteatshod " G5 [\ g arterna

Figure 1. Apollo Block 11 command module.’

» Some challenges can be handled by —— —
engineering and others cannot be . [—————
e Stardust accepted the risk in PICA B
e PICA was originally baselined for Genesis == e

— Manufacturing and design integration issues led to
changing from PICA to C-C

e Can PICA be designed with gaps & seams for
Lunar Return?
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SLA Story: Easier Missions are past ...
Future Missions are more demanding ....

» Heritage Issues (Materials and Missions)

Parameter Viking Pathfinder MER MSL
Shape 70° blunt cone 70° blunt cone 707 blunt cone 707 blunt cone
Diameter (m) 3.54 2.65 2.65 4.50
Vehicle mass (kg) 980 585 836 3400
Relative entry velocity (km/s) =4.40 7.48 5.55 5.93
Trim angle-of-attack (deg) -11.1 0 0 -15.8
Ballistic coefficient (kg/m?) 63.0 62.3 88 140+
Peak heat flux (W/cm?) =21 105.8 44 =234
Total heat load (J/cm?) = 1100 3865 3867 = 6000
PH stagnation pressure (atm) 0.06 0.19 0.06 0.25
Forebody TPS SLA-561V SLA-561V SLA-561V SLA-561V
Backshell TPS None SLA-561S SLA-561S SLA-561V

[ Significantly larger than any prior Mars mission
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SLA & MSL: The Recent Challenges

» Requirements Driver and evolution

e Landing site selection to happen late in the project cycle

e TPS requirement flow needed to be done with the flexibility to choose landing site
» Evolving Trajectory Space Defines the Environment

e Challenge: Bounding requirements
— needs to be evaluated so as to mature the design, manufacture and verify

» Key Aerothermal environment

\ 06-05 +3c Heatshield Environments ‘ ‘ 07-01 -3c Heatshield Environments
300 ‘ ‘ 300 ‘ ‘
i ” L] s . -]
i W i ) i
250 - ! & 250 | K ,
i o | & \ - £k o \
D = \ - ’ | x \ ’
N ’ -05 | -0
g 70 oy o 200 ; ,
— | a : :2 E - -
; i o 4 28 2 | 2y 2 15 4 050 05 1 15 2 25
" | : D v 25 -2 15 1 »O.SVOEJU.S 1 15 2 25 ; | a .‘Y(m) - - a
% : = 150 =
3 0T % N ~p, +U_(atm) ~ - ~p,+ U, (atm)
— W P >< : p
=T 0.303 5 0.303
® | 0.260 = | 0.260
£ 07 - 0.216 | = 10or 0.216 |
i 0.173 (] i . 0.173
0.130 T 0 0.130
50 0.087 | S0 F P 4 ; , « 0.087 [
0.043 | Y ; i ; 0.043
0.000 ﬁ ‘ ‘ ' ‘ 0.000
i i i i | i i | i i i i i i I i i i i L L L L L L L L L Il L Il L L Il L Il L L L L l L L L L
0 300 400 500 600 700 %% 100 200 300 400 500 600 700
Shear, Pa Shear, Pa

8 August 2013



SLA: MSL vs. CEV Block | ( ISS Return)

» Evolving Requirements

e TPS material testing for Human Mission - Qualification and Certification are the key -
test facility capability to verify design is essential

> Trajectories Comparison between MSL and CEV ISS Return

> Key Aerothermal environment parameters that impact SLA selection and
thickness

» Manufacturability (Heritage vs. what is required) for CEV Heatload

e MSL (~ 6 kd/cm?) vs. CEV ISS Return (~ 50 kJ/cm?) heat load determines the TPS
thickness if SLA can perform to the combined aerothermal environment
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SLA Story: Understanding Limits

Capability Limit for MSL and CEV

e Uncertainty in performance or flexible
requirements need vs. robust design

e Robust design means staying away from
cliffs (limit behavior) with plenty of Margin

e
> Manufacturability (Heritage vs. what is SYVECV'! LTt sllesting

required) ‘
|
Z

» Why do we need to Understand SLA .—

Stagnation Arc Jet Testing

e Can you build a TPS as designed?

» Prior missions at threshold of
recession; MSL much higher heat flux,
pressure, shear + turbulent flow

e Mars Technology Program funded
extensive arc jet testing; discovered that
ablation mechanism is related to glass
vaporization, melt flow

e New series of tests underway to
understand melt flow dependency on
shear

> Why wasn’ t this done 20 years ago?

2-D Wedge Arc Jet Testing
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PICA Story

» Low-density carbon based ablator used for Stardust forebody
TPS; fabricated as 1-piece heat shield

» Primary TPS for Orion lunar return forebody heat shield
e Scale of Orion requires fabrication as blocks bonded to aeroshell
e Introduces gaps between blocks that require robust gap filler (system issue)
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Comparison of Stardust and CEV Lunar Return

Parameter Stardust CEV Lunar
Return

Diameter (m) 0.827 5.0

Max heat flux 950 800

(W/cm?)

Total heat load 36 100

(kd/cm?)

Max pressure 36 65

(kPa)

Max shear (Pa) 800 725

TPS thickness 5.82 ~ 10.0

(cm)

Forebody None 6 comp pads

penetrations

H/S Retention Attached Separating

Manufacturability| Monolithic 1- PICA tiles with
piece PICA gaps & seams

MMOD None 6 months MMOD

requirements

exposure

The time to study and fully

understand the limits of PICA is NOW
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TPS Testing & IV&V : Arc Jet Capability

> Arc jet Facility Test Capability
e Operational capabilities are limited
e Test as you fly
e Testing for failure

» Challenges

e Thermal Performance and Material Capability Limit testing requires
combined test environment relatable to flight

Laminar vs. Turbulent

Model Size and Nozzle Configuration
High vs. Low Enthalpy

Shear and Pressure Gradient

8 August 2013
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Current Test Capability in the US
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Stagnation Test Article
High Heat Flux/ Low Shear

Wedge Test Article
Moderate Heat Flux & Shear
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Carbon Phenolic Story:

> Galileo -
e still haven’t deciphered flight data (recession sensors)
e ground test a flight traceability issue
e built GPF facility for Galileo but still couldn’ t simulate radiative heating
e laser tests suggested char spall at worst conditions

> Pioneer-Venus -

e material performed perfectly since environment not far removed from DOD
applications

» Saturn
e |s Carbon-Phenolic appropriate material?
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Carbon Phenolic: Saturn Multi-Probe TPS

- TPS requirement at Saturn is less demanding than at Jupiter
- TPS mass-fractions for prograde entry is about 30% less than Galileo’ s

- Heating pulse about 2.5 times longer due to scale height difference.
Therefore, Saturn probes have less ablation,
but need more insulation

- Time to parachute deployment is about 5 minutes

- Carbon phenolic is well understood but it is not an optimum choice for
this mission (large heat load would benefit from better insulator)

- Qualification testing for this mission is a challenge due to significant
radiative heating component

Entry Latitude Rel. Max Entry | Max. heat Max Forebody | Est. total Max.
direct. deg entry diameter, mass, rate, Heat TPS TPS decel.,
V, m kg kW/cm? Load mass mass g
km/s kJ/cm? fraction | fraction
Pro. 6.5° 26.8 1.265 335 2.66 47.85 | 23.5% | 25.8% | 43.6
Pro. 45° 29.6 1,265 335 3.67 58.67 | 24.8% | 27.3% | 47.9
Retro. 6.5° 46.4 1,265 335 21.5 | 204.21 | 35.2% | 38.7% 76.4
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TPS Testing: Shock Layer Radiation

» Lunar return, Mars return and Saturn Radiative Heating sensitivity with Earth Return Speed
radiation environment
e Lunarreturn  ~(0.5 kW/cm2)
e Mars Return  ~(1 kW/cm? - 4 kW/cm?)

e Saturn ~(2 kW/cm? - 3 kW/cm?)

» During the Apollo era some arc jet
facilities added carbon arc image or
quartz lamps to simulate combined
(radiative + convective) heating - that
capability does not exist today

e No attempt was made to replicate the spectrum of
radiative heating
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e Assumption was “radiation is radiation 0 200 400 600 800

— Probably OK for some materials (carbonaceous), Time. sec
but not all (glassy)

» Combined heating ground test simulation Approach for Qual & Cert. of C-P:
is very important for some missions (high « Arc jet testing to evaluate

speed Earth return, Gas Giants, etc.) performance to convective heating,

e Need to be cognizant of radiative spectrum pressure & shear
(atmospheric composition, velocity)

e Requires definition of TPS spectral radiative properties ~ *  Characterization of material optical

e For many materials, interaction with radiative heating is prOpertieS in comparison to shock
very different than with convective heating layer spectrum
» The TPS community needs to revisit this « Use of high energy lasers to attain
ground test simulation deficiency (or be heat fluxes not achievable in arc
willing to accept significant risk) jets
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Concluding Remarks and
Recommendations

> Material performance forms the basis of any TPS selection. Requires
capable / robust materials to start with

e Understanding limits and/or failure modes is important prior to baselining TPS
materials to missions

— Current modeling capabilities are limited. Testing is the only way to establish capability

e System and Architecture issues are equally important and require development time
for assessment

» Heritage arguments often end-up being risky
— SLA for 5 m diameter HS that can handle 50 kJ/cm? heat load?
— PICA for a 5 m diameter HS?
e System, Architecture and Manufacturing issues need to be understood and solved
— AVCOAT vs. PICA

e When herita?e material is no longer feasible, (precursors not available) the only
option is replacement

— Carbon Phenolic

» Coordinated and Sustained Investment in TPS material and technology
development to benefit wide range of missions.

e |SP and CEV TPS ADP

e Planetary Exploration, both robotic and human missions, will require sustained
investment in technology, people and facilities
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End
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Galileo Probe Heat Shield Ablation:
The Most Difficult Atmospheric Entry in the Solar System

BEFORE ENTRY. AETER ENTRY

1.26
meters

152 kilograms 70 kilograms

Total initial mass of Probe: Bl Ablated material
335 Kilograms Ablation temperature =3900° C




